Changing National Innovation System of Japan?
From Large Firms to Network System

Kazuyuki Motohashi
University of Tokyo & RIETI
http://www.mo.rcast.u-tokyo.ac.jp/
Outline of Presentation

• What is National Innovation System? Characterizing Japanese System
• Growing external collaboration of R&D and econometric analysis
• Policy implications for network innovation model
National Innovation System?

IT infrastructure (internet etc.)
Labor market institutions
IPR policy

KNOWLEDGE GENERATION AND DIFFUSION

High Education Sector (universities, etc.)
Non-profit Research Institutions

Firm’s innovative capability and networks

Product market competition
Financial Market condition

Innovation country performance
Business Expenditure of R&D in Japan

- Toyota: 6%
- Matsushita: 5%
- Nissan: 3%
- Hitachi: 3%
- Toshiba: 3%
- NEC: 3%
- NTT: 3%
- Honda: 5%
- Sony: 4%
- Other top 30 firms: 19%
- Rest of firms: 44%
Japan’s national innovation system

Compartment system by large company: Japan

- **Internal R&D**
 - In-house technology development

- **Fixed compensation packages**
 - Flexible internal labor market

- **Introduction of foreign technology**
- **Establishment of intended product image**

- **R&D sector**
 - Personnel rotation
 - Manufacturing sector

- **Affiliates and other subcontracting companies**
 - Focus on manufacturing technology application development and establishment of information-sharing infrastructure within corporate group

- **Investors**
- **Labor market problems**
- **Finance market problems**
- **Venture companies**
- **Universities and national research institutes**
- **Technology market problems**
Changes in Large Firm Dominated System?: Possible Factors

- Intense innovation competition: globalization and catching up of Korea, Taiwan and China
- Necessity of innovation speed in order to appropriate rents from R&D
- Importance of scientific knowledge for industrial innovation: particularly the case for bio-pharmaceuticals
- Institutional changes in science sector: PRIs and national university reforms
RIETI’s Survey on R&D Collaboration

- Firm level survey on external R&D collaboration: business to business networks and university and industry linkages
- Data for 2003, 556 samples
- Survey items
 - Recent trend of external R&D collaboration and IPR licensing
 - Factors behind R&D collaboration decision
 - Managing the boundary of firm in R&D, internal R&D vs outsourcing
- Detail results are found as the following site
Japanese system is changing?
From RIETI survey

Collaboration with Large firms

Collaboration with small firms

Collaboration with universities
Factors behind R&D outsourcing

Reasons why increasing R&D collaboration

- Respond to intense R&D competition
- Upgrade own basic technology capability
- Cost reduction of R&D
- Needs to access to basic science
- Industry-science linkage
- Policy push for industry-science linkage
- Shortage of R&D fund by own
- Upgrading technology level of counterparts
- Success in past collaboration projects
- Important for technology standard
- Easy to access counterpart information
- Large firms
- Small firms
- Universities
- PRIs
Management of firm’s boundary in R&D
Motivation and underlining hypotheses for econometric analysis

• Factors behing external R&D collaboration
 – Intense innovation competition?
 – Increasing complexity of innovation and the role of scientific knowledge
 – Selection and concentration of R&D projects, but it needs wider technological scope

• UIC’s impacts on research and production productivity: greater impact for small firms
 – Less Not-Invented-Here Syndrome
 – Focusing on more concrete project (short term benefit) and greater pressure for commercialization
Collaboration and R&D strategy

<table>
<thead>
<tr>
<th></th>
<th>Large firms</th>
<th>SME and startups</th>
<th>Universities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SME</td>
<td>LF</td>
<td>SME</td>
</tr>
<tr>
<td>Shorter development lead time</td>
<td>++</td>
<td></td>
<td>++</td>
</tr>
<tr>
<td>Focusing R&D theme</td>
<td>--</td>
<td></td>
<td>++</td>
</tr>
<tr>
<td>Reduce R&D cost</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Reduce R&D staffs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explore new technology seeds</td>
<td>+++</td>
<td></td>
<td>++</td>
</tr>
<tr>
<td>more R&D for application and development project</td>
<td></td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Improving basic technology capability</td>
<td></td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Market needs for R&D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercialization of tech seeds</td>
<td>++</td>
<td></td>
<td>++</td>
</tr>
</tbody>
</table>
Research Productivity by Firm Age

<table>
<thead>
<tr>
<th></th>
<th>all</th>
<th>all</th>
<th>-1950</th>
<th>1951-70</th>
<th>1971-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>lrd</td>
<td>0.276</td>
<td>0.260</td>
<td>0.434</td>
<td>0.183</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td>(7.81)**</td>
<td>(7.19)**</td>
<td>(5.61)**</td>
<td>(3.05)**</td>
<td>(2.29)*</td>
</tr>
<tr>
<td>lemp</td>
<td>0.250</td>
<td>0.246</td>
<td>0.397</td>
<td>0.315</td>
<td>0.131</td>
</tr>
<tr>
<td></td>
<td>(6.08)**</td>
<td>(5.41)**</td>
<td>(3.72)**</td>
<td>(3.30)**</td>
<td>(2.84)**</td>
</tr>
<tr>
<td>cord</td>
<td>-0.030</td>
<td>-0.056</td>
<td>-0.131</td>
<td>0.146</td>
<td>-0.169</td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td>(0.45)</td>
<td>(0.53)</td>
<td>(0.67)</td>
<td>(1.06)</td>
</tr>
<tr>
<td>univ1</td>
<td>0.377</td>
<td>0.355</td>
<td>0.203</td>
<td>-0.077</td>
<td>0.348</td>
</tr>
<tr>
<td></td>
<td>(3.21)**</td>
<td>(3.05)**</td>
<td>(0.95)</td>
<td>(0.33)</td>
<td>(2.09)*</td>
</tr>
<tr>
<td>lage</td>
<td></td>
<td></td>
<td>-2.402</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4.81)**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lage2</td>
<td></td>
<td></td>
<td>0.360</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4.86)**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-1.683</td>
<td>2.302</td>
<td>-4.257</td>
<td>-1.188</td>
<td>0.439</td>
</tr>
<tr>
<td></td>
<td>(7.10)**</td>
<td>(2.57)*</td>
<td>(8.51)**</td>
<td>(2.83)**</td>
<td>(1.30)</td>
</tr>
<tr>
<td>Industry Dummies</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Observations</td>
<td>450</td>
<td>438</td>
<td>168</td>
<td>134</td>
<td>136</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.62</td>
<td>0.64</td>
<td>0.77</td>
<td>0.55</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Absolute value of t statistics in parentheses
* significant at 5%; ** significant at 1%
Implications for J-NIS

- Commercialization of new product
 - Large firm
 - Product development
 - Research Lab.
 - Scope of UIC

- Systemic barriers

- Scientific knowledge and fundamental science at universities and PRI's

- SMEs
- Start-ups

- Scope of UIC

- Close to the market
Synthesis and policy implications

- Growing trend of R&D external collaboration
- Reflecting firms’ R&D strategy for innovation speed and wider technological scope
- Research productivity is higher for young and small firms as compared to old and large firms
- The role of SMEs and start-ups for Japan’s NIS reform toward network type system
- SMEs and start-ups: facilitates system’s transformation. In addition, it may be beneficial for large firms to have strong high-tech startups
- Policies for facilitating network type NIS system are important, such as IPR, labor mobility, VC finance