The Korean Innovation System From Industrial Catch-Up to Technological Leadership?

International Conference "Pathways to Innovation: Policies, Products, and Processes for Competitive Advantage in a Global Economy" Nishogakusha University, Tokyo, May 20-21, 2005

Martin Hemmert

고려대학교 경영대학

Korea University Business School

Contents

- 1 The Concept of Innovation Systems
- 2 The Korean Innovation System: Overview
- 3 The Parts of the Korean Innovation System
- 4 Conclusions and Implications

The Concept of Innovation Systems

Emergence of the Concept

- **Introduced** in the late 80s/early 90s
- Central Issue: Need for systemic analysis (overarching single institutions or organizations) to explain innovative performance
- Multiple levels: <u>national, regional,</u> <u>sectoral innovation systems</u>
- Various definitions; common ground:
 Set of relevant institutions and the interaction between them

The Concept of Innovation Systems

National Innovation Systems: A Simplified Model

The Korean Innovation System: Overview

Major stages of development

• 1950s-1970s:

- Technological development through import of capital goods, formation of large firms, import substitution and export promotion
- Very limited formal R&D activities

• 1980s:

- Formation of industrial R&D base
- Heavy R&D investment by comglomerates (chaebols) to boost technological competitiveness

since the 1990s:

- Formation of basic research capabilities
- Emphasis on international co-operation and exchange

The Korean Innovation System: Overview

R&D intensity of leading countries (% of GDP)

R&D expenditures per person, PPP US-\$ (2003)

US	964.0
Japan	838.4
Germany	657.8
Korea	542.8

⇒ Rapid catch-up to leading countries!

The Korean Innovation System: Overview

R&D expenditures by performing sector (2003)

⇒ Heavy reliance on industrial R&D!

The Parts of the KIS: Business Sector

Industrial R&D activities by industry (2003)

⇒ High concentration on IT sector!

Industrial R&D activities by firm size / type (2003)

Concentration of industrial R&D activities (2003)

Top 1,	То	р6- 6.7%	10,	All others,
23.9%	Top 2-5, 13 1%	То	p 11	20, 48.3%
	13.170		0.07	ρ

⇒ Dominating role of leading large firms!

Global share of triad patent families

Global export market share in high tech industries (2001)

The Parts of the KIS: Government and Public Research Institutions

Governmental R&D budget by ministry (2004)

Ministry of Science & Technology	20.5%
Ministry of Commerce, Industry & Energy	19.3%
Office for Government Policy Coordination	11.9%
Ministry of Defense	11.4%
Ministry of Education	11.1%
Ministry of Information & Communication	9.1%
Others	16.7%

- Highly fragmented S&T policy
- Increased priority of S&T policy since the 1990s
- Efforts to enhance structural change (e.g., large scale support for venture firms)

The Parts of the KIS: Government and Public Research Institutions

Structural data on research institutions (2003)

Type of institutes	Number of institutes	Number of researchers	Average number of researchers / institute	Proportion of governmental funding	Main orientation
Public	63	3,528	56.0	99.9%	Agriculture
Governmen- tally supported	28	8,559	305.7	93.3%	Engineering
Others	78	2,308	29.6	70.7%	Engineering
Total	169	14,395	85.2	92.3%	Engineering (60% of research manpower)

- Predominant governmental funding
- Good fit with needs of industrial sector (engineering)
- Significant capabilities accumulated since the 70s/80s
- Increased flexibility since the 1990s

The Parts of the KIS: Universities and Higher Education System

Features of the Koran Higher Education System:

- Extremely strong emphasis on education in general
- Worldwide highest formal education level of the younger age groups
- Education system strongly criticized for being outdated
- "Brain drain" of high school and college students
- Higher secondary and university education undergoing major reform
 - better fit with practical needs
 - internationalization

The Parts of the KIS: Universities and Higher Education System

R&D spending of universities low...

- Much higher priority given to research
- Networks with firms gradually developing
- Still more investment needed to upgrade R&D infrastructure

The Parts of the KIS: Inter-organizational Linkages

The Financial Market:

- Indirect financing (banks) traditionally predominant
- Mainly oriented towards large firms, low efficiency
- Financial market reform after 1997
- Government support programs for venture capital
 - ⇒ rapid expansion of venture capital sector
 - ⇒ overheating, need for improved screening standards

The Labor Market:

- Strong dualism between large firms (stable employment, high wages) and SMEs (hire and fire, low wages) until 1997
- Increased flexibility in the skilled labor market after 1997
- Increased entrepreneurial activity as a result of restructuring and harsh employment conditions in the corporate sector

The Parts of the KIS: Inter-organizational Linkages

Inter-organizational and inter-sectoral knowledge flows:

- Poorly developed inter-organizational linkages pre-1997 (exception: firm networks within chaebols)
- Recently gradual improvement due to structural changes in factor markets
- Development of university-industry linkages, fostered by governmental support
- Still widespread stand-alone mentality among managers and firms

Conclusions and Implications

The Korean Innovation System: Overall Evaluation

Strengths:

- strong competitiveness in some high-tech industries
- rapid expansion and skill formation
- comprehensive structural adjustment
- strengthening science base

Weaknesses:

- still heavy concentration of resources on large chaebol firms
- SME/venture sector needs further development
- open network culture / interorganizational links only gradually evolving

The Korean Innovation System: Future Perspectives

- rapid development and adjustment as a dynamic source of competitive strength
- still some way to go to become a leading country not only in technology, but also in science
- continued competitive pressure from following catch-up countries (China, South-East Asia, India)
- Considerable potential for technological leadership
 in some areas on the base of mutual interdependence

Implications from an international viewpoint

- Korean firms to be taken seriously as innovating competitors (and sometimes technological leaders)
- Strengthening science base and ongoing internationalization make Korean organizations attractive partners for international collaboration in science & technology