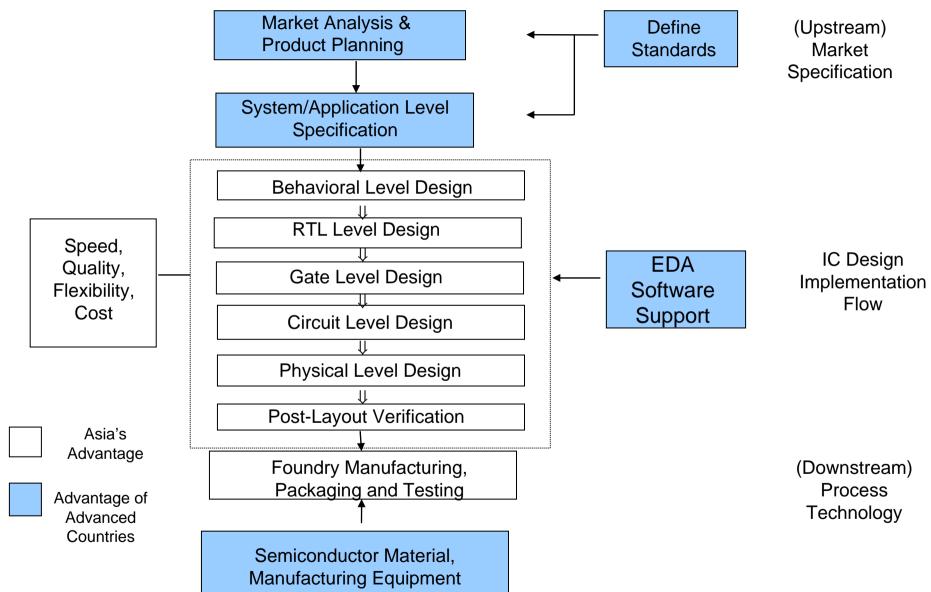
Why is Chip Design Moving to Asia?

Drivers and Policy Implications

© Dieter Ernst East West Center, Honolulu, Hawaii, USA

Research Methodology

- Exploratory, semi-structured interviews (since 2002)
- 70 companies & 15 research institutions (US, Taiwan, Korea, China, Malaysia) that are doing chip design in Asia
- Sample contains global and regional carriers of chip design in Asia


Carriers of Asian Chip Design

- System companies
- Integrated device manufacturers (IDM)
- Contract manufacturers (EMS; ODM)
- 'fabless' chip design houses
- Chip contract manufacturers ('foundries')
- Design implementation services
- Chip packaging & testing
- 'chipless' licensors of 'silicon intellectual properties' (SIPs)
- Tool vendors (EDA; design testing)

Research findings

- Rapid growth of chip design investment in Asia
- All interviewed firms are planning to expand such activities
- Design implementation continues to play dominant role
- System specification is gaining in importance
- Substantial progress in complexity of design

Chip Design Flow Chart

Drivers of Asian Chip Design

- Systemic combination of "pull", "push", and "enabling" factors is creating virtuous cycle
- "pull" factors explain what attracts design to particular locations
- "push" and "enabling" factors explain what tilts the balance in favor of geographical decentralization

"Pull" factors attract chip design to particular locations

Demand (market size & sophistication)

Supply (talent pool)

 Policies (tax rebates; regulations; IPR; infrastructure; education; legal framework)

Annual Cost of Employing a Chip Design Engineer* (US-\$), 2002

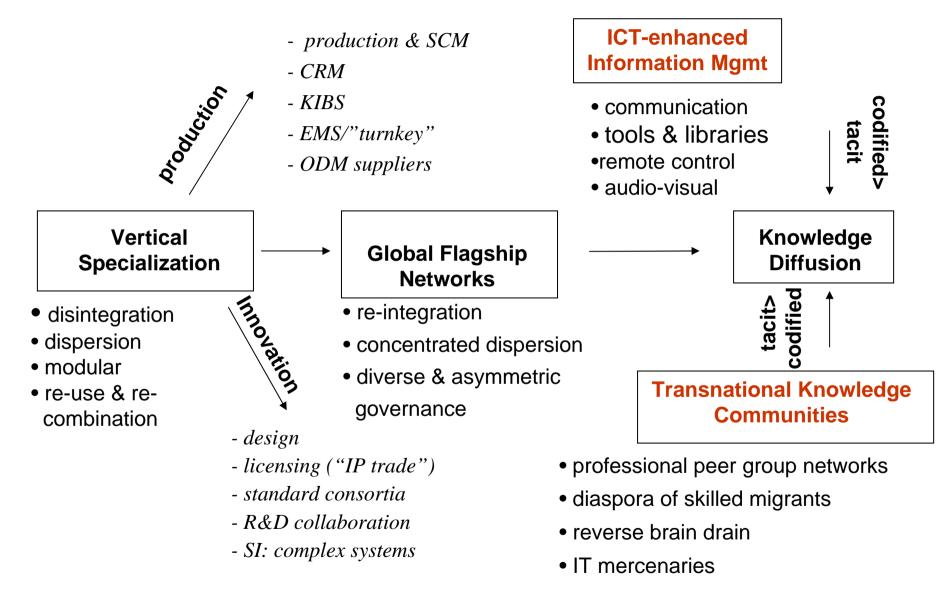
	-	
Location	Annual Cost	
Silicon Valley	300,000	
Canada	150,000	
Ireland	75,000	
Taiwan	<60,000	
South Korea	<65,000	
China	28,000 (Shanghai)	
	24,000 (Suzhou)	
India	30,000	

*=including salary, benefits, equipment, office space and other infrastructure

Sources: PMC-Sierra, Inc. Burnaby, Canada (for Silicon Valley, Canada, Ireland, India); plus interviews (Taiwan, South Korea, China)

Skill requirements and work organization

- "designer bottleneck": US has failed to train enough engineers for the next generation
- Global market for design training
- Asian designers are trained using the latest tools and methodologies
- Global firms seek to bypass resistance to "design automation"


China Market

- World's largest market for telecom equipment (wired & wireless) (test bed for 3G)
- Ditto for handsets (launch market)
- Third largest market for semiconductors
- Sophisticated markets for digital CE (#2) & computers
- Leading export market for US, Japan, Taiwan and Korea

Push factors

- Global markets for technology & knowledge workers reaction changes in design methodology & organization ("vertical specialization")
- Firms "outsource" stages of chip design to specialized suppliers (dis-integration of innovation value chain) and
- "offshore" <u>design projects</u> to new lower-cost locations (geographic dispersion)

Enabling Factors

GDN diversity

- Chinese system company defines system architecture
- contract manufacturing of electronic equipment (Taiwan)
- American IDM provides design platform
- European SIP provider
- fabless design houses (US; Taiwan)
- foundries (Taiwan, Singapore and China)
- chip packaging companies (Taiwan; China)
- tool vendors for design automation and testing from the US and India
- design support service providers(various Asian countries)

Who controls Global Design Networks? (1) General criteria

rent distribution

ownership

who defines strategic direction?

Who controls Global Design Networks? (2) Design-specific criteria

Which of the following functions are performed by whom and where?

- architecting
- business model
- platforms
- system integration
- bottleneck capabilities

Conclusions (1)

- Complexity is no longer an absolute constraint to internationalization of innovation
- Geographic proximity can be a disadvantage when design requires a large number of designers with diverse capabilities
- Pull and policy factors explain what attracts design to particular locations
- Changes in design methodology and organization explain what tilts the balance in favor of geographic decentralization

Conclusions (2) Open Questions

Talent pool	Can East Asian countries replicate the US model of attracting top talent from the global market for knowledge workers?
Innovative Capabilities	Can East Asian firms enter the "global innovation race" as sources of new technology and global standards?
Strategy	 from "fast follower" to technology diversification" "technology leadership" ?

Strategies	Definition	Capabilities	Comments
<u>Catching-</u> up	 enter after growth stage lower-cost producer 	 operational assimilate & improve foreign tech's 	 decreasing returns razor-thin margins
<u>Fast-</u> Follower	 enter early during growth stage quick market response flexible production system cost control 	 process development prototype development 	 footloose investment weak marketing skills where to move to? (paradigm shift)

© Dieter Ernst

Strategies	Definition	Capabilities	Comments
<u>Technology</u> <u>Diversification</u>	 recombine (mostly known) technologies to create new products & services economics of scope (technology) 	 applied research international knowledge sourcing build on proven capabilities IPs 	 higher margins & limited uncertainty new opportunities (vertical specialization in GFNs) latecomer advantages
<u>Technology</u> <u>Leader</u>	 sets standard during introduction of new products/service 	 basic research pure science defining standards superior IPs 	 higher margins strong entry deterrents high cost (R&D regulations) lower-cost imitators "disruptive technologies"

Thank you

© Dieter Ernst East West Center, Honolulu, Hawaii, USA