Strategic Management of Spare Parts in Closed-Loop Supply Chains A System Dynamics Approach

Thomas Stefan Spengler

Braunschweig University of Technology, Germany Department of Production Management

- 1. Introduction
- 2. Management of spare parts in the final-service phase
- 3. Closed-loop supply chains for parts recovery
- 4. System Dynamics Model
- 5. Strategies and results
- 6. Concluding remarks

Guaranteed spare parts supply (Germany)

Department of Production Management, Braunschweig University of Technology

Product life cycles in the electronic and automotive industry

Thomas S. Spengler

Department of Production Management, Braunschweig University of Technology

- Producers have to assure spare parts supply for the average lifetime of the product
- Losing economies of scale
 - production volume diminishes rapidly after the production phase is stopped
- Limited flexibility of production equipment
- Discontinued supply of electronic components that are provided from outside suppliers

Strategies to ensure the ability to supply spare parts during the final service phase

Thomas S. Spengler

Department of Production Management, Braunschweig University of Technology

Study on final orders (automobile supplier)

normalized Inventory, 71 final orders, final service phase 15 years

Thomas S. Spengler Department of Production Management, Braunschweig University of Technology 6 years

- Characteristics of Final Order Policy
 - Build up final stocks that lock up a lot of capital
 - Agfa-Gevaert: 16.5 22 Mio. € (30 40% of total spare parts inventory)
 - Underestimation of demand
 - Producers have to compensate customers for delivery delay
 - Producers often have to redesign the spare part
 - Firms often fail to monitor final stocks adequately

Integrating parts recovery in spare parts management

- More operational flexibility
- Chance to reduce final stocks and
- Chance to reduce stock-outs
- Closed-loop supply chains are difficult to control
- Uncertainties in
 - Returns volume
 - Timing of returns
 - Yield of recovery

- ...

Thomas S. Spengler Department of Production Management, Braunschweig University of Technology

Case Study: Spare parts management in closed-loop supply chains

AGFA: ADC Compact

medical diagnosis device which scans and digitizes data from x-ray films

End of Production: 2001

End of Service: 2008

Product Life Cycle of the ADC Compact

Production phase (1998 – 2001) Total sales: 1920 pieces of equipment

Thomas S. Spengler Department of Production Management, Braunschweig University of Technology

Working Example: Scan-Unit of the ADC Compact

Thomas S. Spengler Department of Production Management, Braunschweig University of Technology

Strategic Management of spare parts at Agfa

Thomas S. Spengler Department of Production Management, Braunschweig University of Technology

Closed Loop Supply Chain for Parts Recovery

Thomas S. Spengler Department of Production Management, Braunschweig University of Technology

System Dynamics Model

System Dynamics

- very effective tool in representing the dynamics of management systems
- enables the user to develop a better understanding
 - of the effects of changes, and
 - supports him in designing alternative policies that result in an improved system performance
- SD was developed by Jay Forrester at the MIT in the 1960 ´s
- applied in many areas such as product development, project management, and supply chain management, among which is a popular explanation of the bullwhip effect

Characteristics of strategies

	recovery of parts	Product acquisition	mid-term forecast	Long term schedule	Stocking recoverable
	considered				parts
Base Case					
Base case with forecast					
Recovery waste stream					
Recovery with aquisition					
Systemwide inventory					
policy waste stream					
Systemwide inventory with					
aquisition					
Early warning system					
waste stream					
Early warning system with					
aquisition (EWA)					
Stocking recoverable parts					
SRP + EWA					

Thomas S. Spengler Department of Production Management, Braunschweig University of Technology

Base case: Optimal final stock; no recovery, no redesign

Thomas Sp**Spelle**gler

Department of Production Management, Braunschweig University of Technology

Base Case: Optimal final stock – 20%, no recovery, redesign

Department of Production Management, Braunschweig University of Technology

Base Case: Optimal final order – 20%, no recovery, redesign

Thomas S. Spengler

Department of Production Management, Braunschweig University of Technology

Comparison of results (net present value)

Thomas S. Spengler

Department of Production Management, Braunschweig University of Technology

Characteristics of strategies

	recovery of parts	Product acquisition	mid-term forecast	Long term schedule	Stocking recoverable
	considered				parts
Base Case					
Base case with forecast					
Recovery waste stream					
Recovery with aquisition					
Systemwide inventory					
policy waste stream					
Systemwide inventory with					
aquisition					
Early warning system					
waste stream					
Early warning system with					
aquisition (EWA)					
Stocking recoverable parts					
SRP + EWA					

Thomas S. Spengler Department of Production Management, Braunschweig University of Technology

Recovery acquisition: 60% final stock, 65% return quota, high recoverability

Thomas S. Spengler Department of Production Management, Braunschweig University of Technology

Comparison of results (net present value)

Thomas S. Spengler

Department of Production Management, Braunschweig University of Technology

Characteristics of strategies

	recovery of parts	Product acquisition	mid-term forecast	Long term schedule	Stocking recoverable
	considered				parts
Base Case					
Base case with forecast					
Recovery waste stream					
Recovery with aquisition					
Systemwide inventory					
policy waste stream					
Systemwide inventory with					
aquisition					
Early warning system					
waste stream					
Early warning system with					
aquisition (EWA)					
Stocking recoverable parts					
SRP + EWA					

Thomas S. Spengler Department of Production Management, Braunschweig University of Technology

Stocking recoverable parts + early warning system:

75% final stock, 50% return quota, low recoverability

Thomas S. Spengler Department of Production Management, Braunschweig University of Technology

Comparison of results (net present value)

Thomas S. Spengler

Department of Production Management, Braunschweig University of Technology

Concluding Remarks

- Recovery of parts can be beneficial to provide customers with spare parts
- system dynamics to test various policies to control the closed-loop supply chain
- different forms of product take back (active product acquisition and waste stream)
- different policies
 - when to stop sending recoverable parts to materials recycling
 - when to acquire units of equipment with recoverable parts
 - when to begin to redesign a spare part.
- necessary to strengthen the monitoring of final stocks as well as the stocks of recoverable parts within closed-loop supply chains.
- Improving information exchange between producers of EEE and recycling companies

Attachments and Data

Parameter

- Service time: 7 years
- Redesign time: 6 months
- **Redesign costs:** 1,5 Mio. €
- **Production costs after redesign:** 200% of production costs during normal phase
- Out of pocket costs for new and recovered parts: 50 € per month and part
- Scrapping or material recycling costs: 22,5 € per part
- **Reverse logistics costs (transportation and deconstruction):** 42,4 € per part
- Product acquisition costs: depend on the proportion of discarded equipment with recoverable parts => max. 200% of reverse logistics costs
- Out of pocket costs for disassembled scan-unit: 1 € per month and part
- **Disassembly costs:** 45 € per scan-unit
- Rate of interest: 8% per year

Thomas S. Spengler Department of Production Management, Braunschweig University of Technology

- **Return Quotas:** 50% 90%
- Final Stock: 60% 100%
- Recoverability: high, medium, low

 $9 \times 9 \times 3 = 243$ simulation runs per strategy

31

Thomas S. Spengler Department of Production Management, Braunschweig University of Technology

Recoverability scenarios

Department of Production Management, Braunschweig University of Technology

Probability mass function of equipment return time

Department of Production Management, Braunschweig University of Technology

Probability mass function of repair

Department of Production Management, Braunschweig University of Technology