

Symposium Climate Protection and Regional Development

Botschaft der Bundesrepublik Deutschland Deutsches Institut für Japanstudien Waseda University

2. November 2016

ティーロ・シュミットセール Dr. Tilo Schmid-Sehl

1. Satoyama in Japan and Germany: Problems (Opportunities???)

- 2. Regional value creation
- 3. Key Success Factors
- 4. Conclusion

Problems with Japanese Satoyama

Snow isolates villages and heating costs rise

- Low childbirth, aging & declining population
- Limited scale of agriculture, low efficiency
- Declining forestry (market price, labor)
- High energy costs
- Stagnating or declining economy
- Bad investment climate
- Untapped farming and forestry resources

Bark sits unused despite it being able to fetch 40 yen + tax / kW

Wood drying has high energy and cost needs

German Satoyama Issues

- German villages had mostly the same issues: But some use this as an opportunity for change
- German villages are even smaller than in Japan
- Farmers and villages took the lead in taking advantage of the new renewable energy support laws and funds to revive village economy
- German bioenergy revolution was led by farmers and forestry people
- Business planning and economics went beyond energy production – more holistic including employment, creating and promoting related industries and education opportunities to bring young people back to the village (example Rettenbach)

Farmers, former farmers, and villagers help operate a methane fermentation plant providing community heat 5

家畜の飼育や転売用チップ材の乾燥での廃熱利用や エネルギー作物を提供している地域の農家への堆肥提供

Heat is also used for barn heating, chip drying, and byproducts cycled into farming as fertilizer

RenEn

Renewable

The farmer-led bioenergy revolution does not only depend on selling electricity, but helps initiate new business,

Avoid negative impact of current biomass usage...

Organic Waste (proteins)

RenEn

Energy

Renewable

Crossborder

... and use farming and forestry resources effectively

RenEnEnergyCrossborder

- Gasification of Wood and BioCokes
- Biocokes from HydroThermal Carbonisation (HTC)
 = Reverse Photosyntesis
- Energize the BioWaste (Biotonne, Green Cut etc.)
- Biodiesel/Ethanol
- Methane fermentation
- Bioplastics

Reduction of Greenhouse gases by energy conversion of biological materials

Strategic heat use is crucial for profitability and also making real results – community heat from renewables is key.

- Satoyama in Japan and Germany: Problems (Opportunities???)
- 2. Regional value creation
- 3. Key Success Factors
- 4. Conclusion

Renewable Energy Revenues – Biomass a big factor !!!

 67% of revenues and 64% of Prime **Energy** Production is biomass energy

 Farmers and foresters benefit most of the energetic use of biomass resources

Primärenergieverbrauch

(Strom & Warme)

7,5 Mrd.€

(Kraftstoffe)

2,6 Mrd. €

erneuerbarer Energieträger 2015

RenEn Renewable Crossborder Energy

Biomass – Value Added, at the end cheaper than oil

• Value of woody materials per ton:

- Freshly cut wood log (long):
- Freshly cut wood log (short):
- Dried wood log (short):
- Wood chips (dried):
- Wood pellets:

- 6.300 Yen (solid cubic meter)
- 10.000 Yen (solid cubic meter)
- 14.000 Yen (stacked cubic meter)
 - 23.000 Yen (stacked cubic meter)
 - 32.000 Yen (lose cubic meter)
- 1kWh of oil energy costs appr. 8 Yen and 1 KWh of biomass energy costs based on wood chip* 19 Yen (full cost base) oil:wood =1:2,375 times *300kg per stacked meter
- Local value added: Wood Chips dried vs. Freshly cut wood = 23.000 Yen 6.300 Yen = 16.700 Yen per stacked cubic meter =14 Yen per kWh
- Net Cost: Oil 8 Yen per kWh vs. wood chips (19 Yen-14 Yen = 5 Yen) oil:wood = 1 : 0,55 times *300kg per stacked meter)

Based on RenEn calculation

Including local value added wood chip utilization for energy production is cheaper than oil

Growing number of BioEnergy Villages

RenEnRenewableEnergyCrossborder

- Often produce more than 100% of their own energy need
- Are community driven
- Local Resources
- Private households take responsibility to produce, to sell and to use energy
- Revive local pride
- Offer additional local job opportunities

185 BioEnergy Villages

Quelle: FNR 2016

St. Peter - BioEnergy Village in Black Forrest

RenFn

Energy

Renewable

Crossborder

Power Consumption: 7 Mio kWh/a **Power** Production: 21 Mio kWh/a

Heat Consumption: 12.000 MWh/a Heat Production: 9.600 MWh/a

- Energy association has 230 members
- 20 farmers supply biomass
- Own forestry used

A mix of Renewables to produce heat and power

- Photovoltaik (1.18 Mio. kWh/a power)
- Solar Thermal (40.000 kWh/a heat)
- Hydro Power (400.000kWh/a power)
- Wind Power (18,4 Mio. kWh/a power)
- Biomass

_

- Wood Chip Boiler (7.500 kWh/a heat)
 - Pellet CHP (2.100 MWh/a heat, 1.400 Mio. kWh/a power)

Citizens participate in Community Power

Bürger Energie St. Peter eG (eingetragene Genossenschaft)

BioMass Boiler and CHP

- Est. in 2009 by 11 citizens (e.g. forester, farmer, banker)
- 80 interested citizens, today appr. 250 members
- 220 House connection (80% of village center)
- Honorary Board, Mayor is Chairman

Wind Energy

- First Wind Energy Generators were built by a farmer (Mr. Weber)
- Other Wind Farm was built by citizen
 participation

RenEn

Energy

Renewable

Crossborder

Rettenbach: ,Leadership' as Community Power

Before:

- Shrinking population
- Young people leave
- Shrinking Economy

Today:

- Increasing population, young families move to Rettenbach
- New companies (e.g. forest machinery
- Own Community Center
- New Pride in the Community

Farmer Fischer (later mayor) started solar energy and biomass

- Farmer Fischer was the first to build PV
- Others followed
- Rettenbach became many times German Champion for Solar Energy

Triesdorf/Merkendorf: Village and Farming School towards energy autonomy

BioMass Energy for Heat Production Near Heating Network for University of Agriculture (Triesdorf)

BioMass Energy for Power Production (Merkendorf)

2011	PV-Anlagen		Biomasse		Wasserkraft		Windkraft		Strom	Strom
	Anzah	[kwh]	Anzah	[kWh]	Anzahl	[kWh]	Anzahl	DWh1	Summer [kWh]	Prozent
Mittelescheebach	121	1.864.110							1.864.110	43
Wolframs- Eschenbach	212	9.730.959	8	13.556.837			3	1.881.818	25.169.614	262
Weidenbach	132	1.944.403	3	2.213.947					4.158.350	61
Ornbasi	97	1.150.808	2	4.432.068	1	21.768		1000	5.604.644	125
Merkendorf	295	5.966.148	9	26.578.690	1	9.819			32.554.657	247
AMR (gesamt)	857	20.656.428	19	46.781.542			3	1.881.818	69.351.375	180

Realizing the Resource Cycle with HTC: Biocokes for Fuel and Process Water

RenEn Energy Crossborder

- Satoyama in Japan and Germany: Problems (Opportunities???)
- 2. Regional value creation
- **3. Key Success Factors**
- 4. Conclusion

Key to Success

- Existing of unused biomass resources
- Strong will and leadership of individuals
- Support from local government and councils
- Identification of and collaboration with diverse stakeholders (local government, forestry and farming individ., non-profits, etc.)
- Local development aid and funds
- Effective heat production and use, including options for heat exchange (providing cooling)
- Joint planning with and employment of young people from in and outside the region

Renewable

Crossborder

Energy

- 1. Satoyama in Japan and Germany: Problems (Opportunities???)
- 2. Regional value creation
- 3. Key Success Factors

4. Conclusion

Conclusion: BioEnergy is a great contributor to regional development

It is:

- Sustainable (nearly unlimited)
- Economical (new income, labour, investment)
- Social (community based, collaborative)
- Democratic (decentral)

It provides a great opportunity to support and revive economic (re-)development of rural areas

Rural Economies can lead the energy revolution (!!!)

Soil Nutrient Circulation

技術に関するお問い合わせやお見積もり依頼など、お気軽にご連絡下さい

本社 代表:シュミットセール・ティーロ 担当:須本 エドワード 住所:〒222-0037 神奈川県横浜市港北 区大倉山2丁目34-15 電話:(050)5534-3566 担当:(070) 6921-2692(須本) メール: Esumoto@re-crossborder.com

ヨーロッパ本社 代表:シュミットセール・ティーロ

住所: Schickhardtstrasse 38 D-72770 Reutlingen, Germany 電話: +49 721 1387 178 直通: +49 162 2819 418 メール: tschmid-sehl@re-crossborder.com 地域発、循環型バイオ経済の未来へ Rural Leadership towrads a Circular BioEconomy

RenEn Renewable From Linear, Recycling, to a Circular Economy Energy Crossborder Circular Rioeconomy Linear Economy lar Economy stainable Production Resources Production Crop, Foods Ben Waste, Nethane Studge Agriculture **Production** Was wable Energy onsumption sumption Consumption р COS Fossil Fuel Oil Certificer & Funds Neutral newable Energy Waste J Wind Energy Municipal Waste Natur Gas Solar Energy Land-HTC fill ÷ ELECTRICITY **Municipalities**

Biomass Energy

Local Capital Local Benefit

Potential Biomass (Wood): Win-Win for Environmental and Social Infrastructure

Typical Japanese Mountain with Forest

Strengthen Rural Infrastructure and Economy

Aligning Organizations Across Borders

ment

GDP

BioEnergy Village – A model case of Federal Ministry of Food and Agriculture (20 years)

• Village with 450 people

RenEn

Energy

Renewable Crossborder

- 150 houses
- 450 MWh power consumption
- 4,5 Mio kWh heat consumption
 - Investment of 14 Mio. Euro
 - Savings/Income 27 Mio. Euro
 - Additional cost 10 Mio. Euro
 - Regional Value Added 10. Mio euro

Conclusion

- Energy Crossborder
- Limitation of bioenergy is not feedstock or cost
- The true limitation is when the potential of local biomass resources do not match project design and objectives
- Scale of project key to sustainability
- Sustainable projects can circulate resources and matches the potential and needs of local communities such as employment and energy needs
- Key to success is understanding local needs and holistic planning by identifying all potentials and chances (including non-energy)
- Now time also to look into innovation and new technology to spur change and economic activity